A review of Hopfield neural networks for solving mathematical programming problems
نویسندگان
چکیده
The Hopfield neural network (HNN) is one major neural network (NN) for solving optimization or mathematical programming (MP) problems. The major advantage of HNN is in its structure can be realized on an electronic circuit, possibly on a VLSI (very large-scale integration) circuit, for an on-line solver with a parallel-distributed process. The structure of HNN utilizes three common methods, penalty functions, Lagrange multipliers, and primal and dual methods to construct an energy function. When the function reaches a steady state, an approximate solution of the problem is obtained. Under the classes of these methods, we further organize HNNs by three types of MP problems: linear, non-linear, and mixed-integer. The essentials of each method are also discussed in details. Some remarks for utilizing HNN and difficulties are then addressed for the benefit of successive investigations. Finally, conclusions are drawn and directions for future study are provided. 2008 Elsevier B.V. All rights reserved.
منابع مشابه
A Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملMicrosoft Word - 27_37-A-_폴랜드-예정 Copyright Accepted_ 0620 Neural algorithms for solving some multi criterion optimization
In this paper, artificial neural networks for solving multiobjective optimization problems have been considered. The Tank-Hopfield model for linear programming has been extended, and then the neural model for finding Pareto-optimal solutions in the linear multi-criterion optimization problem with continuous decision variables has been discussed. Furthermore, the model for solving quasi-quadrati...
متن کاملScaling properties of neural networks for job-shop scheduling
This paper investigates the scaling properties of neural networks for solving job-shop scheduling problems. Specifically, the Tank-Hopfield linear programming network is modified to solve mixed integer linear programming with the addition of step-function amplifiers. Using a linear energy function, our approach avoids the traditional problems associated with most Hopfield networks using quadrat...
متن کاملAn efficient modified neural network for solving nonlinear programming problems with hybrid constraints
This paper presents the optimization techniques for solving convex programming problems with hybrid constraints. According to the saddle point theorem, optimization theory, convex analysis theory, Lyapunov stability theory and LaSalleinvariance principle, a neural network model is constructed. The equilibrium point of the proposed model is proved to be equivalent to the optima...
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European Journal of Operational Research
دوره 198 شماره
صفحات -
تاریخ انتشار 2009